205 research outputs found

    Phonon instability in two-dimensional dipolar Bose-Einstein Condensates

    Full text link
    The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally different in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.Comment: 4 pages, 4 figure

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure

    Kelvon-roton instability of vortex lines in dipolar Bose-Einstein condensates

    Full text link
    The physics of vortex lines in dipolar condensates is studied. Due to the nonlocality of the dipolar interaction, the 3D character of the vortex plays a more important role in dipolar gases than in typical short-range interacting ones. In particular, the dipolar interaction significantly affects the stability of the transverse modes of the vortex line. Remarkably, in the presence of a periodic potential along the vortex line, a roton minimum may develop in the spectrum of transverse modes. We discuss the appropriate conditions at which this roton minimum may eventually lead to an instability of the straight vortex line, opening new scenarios for vortices in dipolar gases.Comment: 4 pages, 3 eps figure

    Phase transition from straight into twisted vortex-lines in dipolar Bose-Einstein condensates

    Get PDF
    The non-local non-linearity introduced by the dipole-dipole interaction plays a crucial role in the physics of dipolar Bose-Einstein condensates. In particular, it may distort significantly the stability of straight vortex lines due to the rotonization of the Kelvin-wave spectrum. In this paper we analyze this instability showing that it leads to a second-order-like phase transition from a straight vortex-line into novel helical or snake-like configurations, depending on the dipole orientation.Comment: 11 pages, 6 figures, Accepted for publication in New J. Phy

    Stability of dark solitons in three dimensional dipolar Bose-Einstein condensates

    Full text link
    The dynamical stability of dark solitons in dipolar Bose-Einstein condensates is studied. For standard short-range interacting condensates dark solitons are unstable against transverse excitations in two and three dimensions. On the contrary, due to its non local character, the dipolar interaction allows for stable 3D stationary dark solitons, opening a qualitatively novel scenario in nonlinear atom optics. We discuss in detail the conditions to achieve this stability, which demand the use of an additional optical lattice, and the stability regimes.Comment: 4 pages, 3 eps figure

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic

    Frequency of eNOS polymorphisms in the Colombian general population

    Get PDF
    BACKGROUND: Nitric oxide (NO) synthesized by endothelial cells is known to be a potent vasodilator. It has been suggested that polymorphisms in endothelial nitric oxide synthase (eNOS) can affect the response of the vascular endothelium to increased oxidative stress. The objective of the present study was to determine the presence of G894T (rs1799983), intron-4 (27-bp TR) and -T786C (rs2070744) polymorphisms in the eNOS gene among the Colombian general population. RESULTS: Genotype and allele frequencies showed significant differences in their distribution. White, black and mixed populations were in HW equilibrium for the variants in 27-bp TR- and rs1799983, but the black population was in HW disequilibrium for rs2070744 (p < 0.001). Allele "T" of rs1799983 polymorphisms was more common in the white population (26,5%) than the others, while allele "C" of rs2070744 polymorphisms had a similar frequency in all populations, and the allele 4a from 27-bp TR was more frequent in the black population (26,2%) than the others. Similar differences were found when genotypes were analyzed. CONCLUSION: The findings suggest that there is a substantial difference in the distribution of eNOS polymorphisms between different ethnic groups. These results could aid the understanding of inter-ethnic differences in NO bioavailability, cardiovascular risk, and response to drugs

    NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    Get PDF
    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://freescience.org/cs/NIBBS

    Cold and Ultracold Molecules: Science, Technology, and Applications

    Full text link
    This article presents a review of the current state of the art in the research field of cold and ultracold molecules. It serves as an introduction to the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules and describes new prospects for fundamental research and technological development. Cold and ultracold molecules may revolutionize physical chemistry and few body physics, provide techniques for probing new states of quantum matter, allow for precision measurements of both fundamental and applied interest, and enable quantum simulations of condensed-matter phenomena. Ultracold molecules offer promising applications such as new platforms for quantum computing, precise control of molecular dynamics, nanolithography, and Bose-enhanced chemistry. The discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of Physics Special Issue on Cold and Ultracold Molecule
    corecore